Calls marked with (*) must have projects related to our 2026-27 theme “Doubles, Doppelgangers”. All deadlines are 4:00pm ET unless noted. Dates subject to change.
- Faculty Research Fellows: open now | closes September 16 (12-month must be on theme)
- New Media Public Humanities Postdoctoral Fellow: opens September 2 | closes November 25*
- JHI Critical Digital Humanities Postdoctoral Fellow: opens September 2 | closes November 25*
- Visiting Public Humanities Faculty Fellow: opens September 2 | closes November 25*
- Scholars-in-Residence: opens January | closes end of February (11:59pm)
- Chancellor Jackman Graduate Fellows: opens January 27 | closes March 10*
- UTM-JHI Annual Seminar: opens end January | closes end of April
- Program for the Arts: opens February 3 | closes March 24 (on theme preferred)
- UTSC-JHI Digital Humanities Fellow: opens March 3 | closes April 14
- Undergraduate Fellows: opens March 10 | closes April 21*
- Working Groups: opens March 17 | closes May 12
- Writing Retreat: opens April 1 | closes April 30
- Grant Writing Bootcamp: opens April 1 | closes May 7
2026-27: Doubles, Doppelgangers
Doubles, mirror images, and infinite recursive nesting of identical structures are omnipresent in nature and in culture. Our stories rely on concepts such as the play within a play, game within a game, dream within a dream, mise en abyme, self-representation, halls of mirrors, replicas/worlds in miniature, imposters, cycles, microhistories and metanarratives. Within our reflections on mind, thought, and metaphysics, we explore reality as (nested) simulation, infinite or eternal spaces or beings, cosmologies where each thing reflects/contains each other thing, hauntings/ghostly echoes/premonitions, and reflections into infinity. Our reflections of nature, whether human, biological, or computational, rely crucially on notions of recursion, recurrence, fractals, and the distortions that accrue across them (mutation, tradition, drift). In disciplines across the humanities, we observe the use of fractals, spirals, images contained in themselves, doubles, reflections (of reflections of reflections), and rhizomes. What might an exploration of doubles and recursion reveal about the ways that we reflect our realities?